Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized latent-code selection for explainable conditional text-to-image GANs (2204.12678v1)

Published 27 Apr 2022 in cs.CV

Abstract: The task of text-to-image generation has achieved remarkable progress due to the advances in the conditional generative adversarial networks (GANs). However, existing conditional text-to-image GANs approaches mostly concentrate on improving both image quality and semantic relevance but ignore the explainability of the model which plays a vital role in real-world applications. In this paper, we present a variety of techniques to take a deep look into the latent space and semantic space of the conditional text-to-image GANs model. We introduce pairwise linear interpolation of latent codes and linguistic' linear interpolation to study what the model has learned within the latent space andlinguistic' embeddings. Subsequently, we extend linear interpolation to triangular interpolation conditioned on three corners to further analyze the model. After that, we build a Good/Bad data set containing unsuccessfully and successfully synthetic samples and corresponding latent codes for the image-quality research. Based on this data set, we propose a framework for finding good latent codes by utilizing a linear SVM. Experimental results on the recent DiverGAN generator trained on two benchmark data sets qualitatively prove the effectiveness of our presented techniques, with a better than 94\% accuracy in predicting ${Good}$/${Bad}$ classes for latent vectors. The Good/Bad data set is publicly available at https://zenodo.org/record/5850224#.YeGMwP7MKUk.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhenxing Zhang (29 papers)
  2. Lambert Schomaker (35 papers)
Citations (4)