Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Named Entity Recognition for Audio De-Identification (2204.12622v1)

Published 26 Apr 2022 in cs.SD, cs.CR, and eess.AS

Abstract: Data anonymization is often a task carried out by humans. Automating it would reduce the cost and time required to complete this task. This paper presents a pipeline to automate the anonymization of audio data in French. We propose a pipeline, which takes audio files with their transcriptions and removes the named entities (NEs) present in the audio. Our pipeline is made up of a forced aligner, which aligns words in an audio transcript with speech and a model that performs named entity recognition (NER). Then, the audio segments that correspond to NEs are substituted with silence to anonymize audio. We compared forced aligners and NER models to find the best ones for our scenario. We evaluated our pipeline on a small hand-annotated dataset, achieving an F1 score of 0.769. This result shows that automating this task is feasible.

Citations (3)

Summary

We haven't generated a summary for this paper yet.