Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Isoperimetric lower bounds for critical exponents for long-range percolation (2204.12410v2)

Published 26 Apr 2022 in math.PR, math-ph, and math.MP

Abstract: We study independent long-range percolation on $\mathbb{Z}d$ where the vertices $x$ and $y$ are connected with probability $1-e{-\beta|x-y|{-d-\alpha}}$ for $\alpha > 0$. Provided the critical exponents $\delta$ and $2-\eta$ defined by $\delta = \lim_{n\to \infty} \frac{-\log(n)}{\log\left(\mathbb{P}{\beta_c}\left(|K_0|\geq n\right)\right)}$ and $2-\eta = \lim{x \to \infty} \frac{\log\left(\mathbb{P}_{\beta_c}\left(0\leftrightarrow x\right)\right)}{\log(|x|)} + d$ exist, where $K_0$ is the cluster containing the origin, we show that \begin{equation*} \delta \geq \frac{d+(\alpha\wedge 1)}{d-(\alpha\wedge 1)} \ \text{ and } \ 2-\eta \geq \alpha \wedge 1 \text. \end{equation*} The lower bound on $\delta$ is believed to be sharp for $d = 1, \alpha \in \left[\frac{1}{3},1\right)$ and for $d = 2, \alpha \in \left[\frac{2}{3},1\right]$, whereas the lower bound on $2-\eta$ is sharp for $d=1, \alpha \in (0,1)$, and for $\alpha \in \left(0,1\right]$ for $d>1$, and is not believed to be sharp otherwise. Our main tool is a connection between the critical exponents and the isoperimetry of cubes inside $\mathbb{Z}d$.

Summary

We haven't generated a summary for this paper yet.