Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twin-width VII: groups (2204.12330v2)

Published 26 Apr 2022 in math.GR, cs.DM, and math.CO

Abstract: Twin-width is a recently introduced graph parameter with applications in algorithmics, combinatorics, and finite model theory. For graphs of bounded degree, finiteness of twin-width is preserved by quasi-isometry. Thus, through Cayley graphs, it defines a group invariant. We prove that groups which are abelian, hyperbolic, ordered, solvable, or with polynomial growth, have finite twin-width. Twin-width can be characterised by excluding patterns in the self-action by product of the group elements. Based on this characterisation, we propose a strengthening called uniform twin-width, which is stable under constructions such as group extensions, direct products, and direct limits. The existence of finitely generated groups with infinite twin-width is not immediate. We construct one using a result of Osajda on embeddings of graphs into groups. This implies the existence of a class of finite graphs with unbounded twin-width but containing $2{O(n)} \cdot n!$ graphs on vertex set ${1,\dots,n}$, settling a question asked in a previous work.

Citations (16)

Summary

We haven't generated a summary for this paper yet.