Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A dynamic that evolves toward a Nash equilibrium (2204.12289v2)

Published 25 Apr 2022 in cs.GT and math.OC

Abstract: In this paper, we study an exponentiated multiplicative weights dynamic based on Hedge, a well-known algorithm in theoretical machine learning and algorithmic game theory. The empirical average (arithmetic mean) of the iterates Hedge generates is known to approach a minimax equilibrium in zero-sum games. We generalize that result to show that a weighted version of the empirical average converges to an equilibrium in the class of symmetric bimatrix games for a diminishing learning rate parameter. Our dynamic is the first dynamical system (whether continuous or discrete) shown to evolve toward a Nash equilibrium without assuming monotonicity of the payoff structure or that a potential function exists. Although our setting is somewhat restricted, it is also general as the class of symmetric bimatrix games captures the entire computational complexity of the PPAD class (even to approximate an equilibrium).

Summary

We haven't generated a summary for this paper yet.