Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SkillNet-NLG: General-Purpose Natural Language Generation with a Sparsely Activated Approach (2204.12184v1)

Published 26 Apr 2022 in cs.CL and cs.AI

Abstract: We present SkillNet-NLG, a sparsely activated approach that handles many natural language generation tasks with one model. Different from traditional dense models that always activate all the parameters, SkillNet-NLG selectively activates relevant parts of the parameters to accomplish a task, where the relevance is controlled by a set of predefined skills. The strength of such model design is that it provides an opportunity to precisely adapt relevant skills to learn new tasks effectively. We evaluate on Chinese natural language generation tasks. Results show that, with only one model file, SkillNet-NLG outperforms previous best performance methods on four of five tasks. SkillNet-NLG performs better than two multi-task learning baselines (a dense model and a Mixture-of-Expert model) and achieves comparable performance to task-specific models. Lastly, SkillNet-NLG surpasses baseline systems when being adapted to new tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junwei Liao (12 papers)
  2. Duyu Tang (65 papers)
  3. Fan Zhang (686 papers)
  4. Shuming Shi (126 papers)
Citations (5)