Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prime Factorization of ideals in commutative rings, with a focus on Krull rings (2204.12098v2)

Published 26 Apr 2022 in math.AC

Abstract: Let $R$ be a commutative ring with identity. The structure theorem says that $R$ is a PIR (resp., UFR, general ZPI-ring, $\pi$-ring) if and only if $R$ is a finite direct product of PIDs (resp., UFDs, Dedekind domains, $\pi$-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations $v$ or $t$ as follows: An integral domain $R$ is a Krull domain if and only if every nonzero proper principal ideal of $R$ can be written as a finite $v$- or $t$-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation $u$ on $R$, so that $R$ is a general Krull ring if and only if every proper principal ideal of $R$ can be written as a finite $u$-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

Summary

We haven't generated a summary for this paper yet.