Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PP-MARL: Efficient Privacy-Preserving MARL for Cooperative Intelligence in Communication (2204.12064v1)

Published 26 Apr 2022 in cs.MA, cs.AI, cs.CR, and cs.NI

Abstract: AI has been introduced in communication networks and services to improve efficiency via self-optimization. Cooperative intelligence (CI), also known as collective intelligence and collaborative intelligence, is expected to become an integral element in next-generation networks because it can aggregate the capabilities and intelligence of multiple devices. However, privacy issues may intimidate, obstruct, and hinder the deployment of CI in practice because collaboration heavily relies on data and information sharing. Additional practical constraints in communication (e.g., limited bandwidth) further limit the performance of CI. To overcome these challenges, we propose PP-MARL, an efficient privacy-preserving learning scheme based on multi-agent reinforcement learning (MARL). We apply and evaluate our scheme in two communication-related use cases: mobility management in drone-assisted communication and network control with edge intelligence. Simulation results reveal that the proposed scheme can achieve efficient and reliable collaboration with 1.1-6 times better privacy protection and lower overheads (e.g., 84-91% reduction in bandwidth) than state-of-the-art approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets