Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Band Estimation for Survival Random Forests (2204.12038v1)

Published 26 Apr 2022 in stat.ME, stat.CO, and stat.ML

Abstract: Survival random forest is a popular machine learning tool for modeling censored survival data. However, there is currently no statistically valid and computationally feasible approach for estimating its confidence band. This paper proposes an unbiased confidence band estimation by extending recent developments in infinite-order incomplete U-statistics. The idea is to estimate the variance-covariance matrix of the cumulative hazard function prediction on a grid of time points. We then generate the confidence band by viewing the cumulative hazard function estimation as a Gaussian process whose distribution can be approximated through simulation. This approach is computationally easy to implement when the subsampling size of a tree is no larger than half of the total training sample size. Numerical studies show that our proposed method accurately estimates the confidence band and achieves desired coverage rate. We apply this method to veterans' administration lung cancer data.

Summary

We haven't generated a summary for this paper yet.