2000 character limit reached
Surfaces of section for geodesic flows of closed surfaces (2204.11977v2)
Published 25 Apr 2022 in math.DG, math.DS, and math.SG
Abstract: We prove several results concerning the existence of surfaces of section for the geodesic flows of closed orientable Riemannian surfaces. The surfaces of section $\Sigma$ that we construct are either Birkhoff sections, meaning that they intersect every sufficiently long orbit segment of the geodesic flow, or at least they have some hyperbolic components in $\partial\Sigma$ as limit sets of the orbits of the geodesic flow that do not return to $\Sigma$. In order to prove these theorems, we provide a study of configurations of simple closed geodesics of closed orientable Riemannian surfaces, which may have independent interest. Our arguments are based on the curve shortening flow.