Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completing Networks by Learning Local Connection Patterns (2204.11852v2)

Published 25 Apr 2022 in cs.LG and cs.AI

Abstract: Network completion is a harder problem than link prediction because it does not only try to infer missing links but also nodes. Different methods have been proposed to solve this problem, but few of them employed structural information - the similarity of local connection patterns. In this paper, we propose a model named C-GIN to capture the local structural patterns from the observed part of a network based on the Graph Auto-Encoder framework equipped with Graph Isomorphism Network model and generalize these patterns to complete the whole graph. Experiments and analysis on synthetic and real-world networks from different domains show that competitive performance can be achieved by C-GIN with less information being needed, and higher accuracy compared with baseline prediction models in most cases can be obtained. We further proposed a metric "Reachable Clustering Coefficient(CC)" based on network structure. And experiments show that our model perform better on a network with higher Reachable CC.

Summary

We haven't generated a summary for this paper yet.