Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel Synthesis for Autoregressive Speech Generation (2204.11806v3)

Published 25 Apr 2022 in cs.SD and eess.AS

Abstract: Autoregressive neural vocoders have achieved outstanding performance in speech synthesis tasks such as text-to-speech and voice conversion. An autoregressive vocoder predicts a sample at some time step conditioned on those at previous time steps. Though it synthesizes natural human speech, the iterative generation inevitably makes the synthesis time proportional to the utterance length, leading to low efficiency. Many works were dedicated to generating the whole speech sequence in parallel and proposed GAN-based, flow-based, and score-based vocoders. This paper proposed a new thought for the autoregressive generation. Instead of iteratively predicting samples in a time sequence, the proposed model performs frequency-wise autoregressive generation (FAR) and bit-wise autoregressive generation (BAR) to synthesize speech. In FAR, a speech utterance is split into frequency subbands, and a subband is generated conditioned on the previously generated one. Similarly, in BAR, an 8-bit quantized signal is generated iteratively from the first bit. By redesigning the autoregressive method to compute in domains other than the time domain, the number of iterations in the proposed model is no longer proportional to the utterance length but to the number of subbands/bits, significantly increasing inference efficiency. Besides, a post-filter is employed to sample signals from output posteriors; its training objective is designed based on the characteristics of the proposed methods. Experimental results show that the proposed model can synthesize speech faster than real-time without GPU acceleration. Compared with baseline vocoders, the proposed model achieves better MUSHRA results and shows good generalization ability for unseen speakers and 44 kHz speech.

Citations (4)

Summary

We haven't generated a summary for this paper yet.