Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Word Meta-Embedding Learning (2204.11660v1)

Published 25 Apr 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Meta-embedding (ME) learning is an emerging approach that attempts to learn more accurate word embeddings given existing (source) word embeddings as the sole input. Due to their ability to incorporate semantics from multiple source embeddings in a compact manner with superior performance, ME learning has gained popularity among practitioners in NLP. To the best of our knowledge, there exist no prior systematic survey on ME learning and this paper attempts to fill this need. We classify ME learning methods according to multiple factors such as whether they (a) operate on static or contextualised embeddings, (b) trained in an unsupervised manner or (c) fine-tuned for a particular task/domain. Moreover, we discuss the limitations of existing ME learning methods and highlight potential future research directions.

Citations (11)

Summary

We haven't generated a summary for this paper yet.