Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Broad Recommender System: An Efficient Nonlinear Collaborative Filtering Approach (2204.11602v5)

Published 20 Apr 2022 in cs.IR and cs.LG

Abstract: Recently, Deep Neural Networks (DNNs) have been widely introduced into Collaborative Filtering (CF) to produce more accurate recommendation results due to their capability of capturing the complex nonlinear relationships between items and users.However, the DNNs-based models usually suffer from high computational complexity, i.e., consuming very long training time and storing huge amount of trainable parameters. To address these problems, we propose a new broad recommender system called Broad Collaborative Filtering (BroadCF), which is an efficient nonlinear collaborative filtering approach. Instead of DNNs, Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items, which can avoid the above issues while achieving very satisfactory recommendation performance. However, it is not feasible to directly feed the original rating data into BLS. To this end, we propose a user-item rating collaborative vector preprocessing procedure to generate low-dimensional user-item input data, which is able to harness quality judgments of the most similar users/items. Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. D. Wang, X. Zhang, D. Yu, G. Xu, and S. Deng, “CAME: Content- and context-aware music embedding for recommendation,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 3, pp. 1375–1388, 2021.
  2. J. Ma, J. Wen, M. Zhong, W. Chen, and X. Li, “MMM: multi-source multi-net micro-video recommendation with clustered hidden item representation learning,” Data Sci. Eng., vol. 4, no. 3, pp. 240–253, 2019.
  3. P. Hu, R. Du, Y. Hu, and N. Li, “Hybrid item-item recommendation via semi-parametric embedding,” in IJCAI, 2019, pp. 2521–2527.
  4. J. Chen, T. Zhu, M. Gong, and Z. Wang, “A game-based evolutionary clustering with historical information aggregation for personal recommendation,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 2, pp. 552–564, 2023.
  5. C. Xu, P. Zhao, Y. Liu, J. Xu, V. S. Sheng, Z. Cui, X. Zhou, and H. Xiong, “Recurrent convolutional neural network for sequential recommendation,” in WWW, 2019, pp. 3398–3404.
  6. O. Barkan, N. Koenigstein, E. Yogev, and O. Katz, “CB2CF: a neural multiview content-to-collaborative filtering model for completely cold item recommendations,” in RecSys, 2019, pp. 228–236.
  7. C. Wang, M. Niepert, and H. Li, “RecSys-DAN: Discriminative adversarial networks for cross-domain recommender systems,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 8, pp. 2731–2740, 2020.
  8. W. Fu, Z. Peng, S. Wang, Y. Xu, and J. Li, “Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems,” in AAAI, 2019, pp. 94–101.
  9. A. Ferraro, “Music cold-start and long-tail recommendation: bias in deep representations,” in RecSys, 2019, pp. 586–590.
  10. Z. Wang, H. Chen, Z. Li, K. Lin, N. Jiang, and F. Xia, “Vrconvmf: Visual recurrent convolutional matrix factorization for movie recommendation,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 3, pp. 519–529, 2022.
  11. J. Chen, W. Chen, J. Huang, J. Fang, Z. Li, A. Liu, and L. Zhao, “Co-purchaser recommendation for online group buying,” Data Sci. Eng., vol. 5, no. 3, pp. 280–292, 2020.
  12. X. He, X. Du, X. Wang, F. Tian, J. Tang, and T.-S. Chua, “Outer product-based neural collaborative filtering,” in IJCAI, 2018, pp. 2227–2233.
  13. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for performing collaborative filtering,” SIGIR Forum, vol. 51, no. 2, pp. 227–234, 2017.
  14. J. B. Schafer, D. Frankowski, J. L. Herlocker, and S. Sen, “Collaborative filtering recommender systems,” in The Adaptive Web, Methods and Strategies of Web Personalization, 2007, pp. 291–324.
  15. D.-K. Chae, J.-S. Kang, S.-W. Kim, and J. Choi, “Rating augmentation with generative adversarial networks towards accurate collaborative filtering,” in WWW, 2019, pp. 2616–2622.
  16. H. Shin, S. Kim, J. Shin, and X. Xiao, “Privacy enhanced matrix factorization for recommendation with local differential privacy,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1770–1782, 2018.
  17. H. Zhang, Y. Sun, M. Zhao, T. W. S. Chow, and Q. M. J. Wu, “Bridging user interest to item content for recommender systems: An optimization model,” IEEE Trans. Cybern., vol. 50, no. 10, pp. 4268–4280, 2020.
  18. C. Chen, Z. Liu, P. Zhao, J. Zhou, and X. Li, “Privacy preserving point-of-interest recommendation using decentralized matrix factorization,” in AAAI, 2018, pp. 257–264.
  19. M. Vlachos, C. Dünner, R. Heckel, V. G. Vassiliadis, T. P. Parnell, and K. Atasu, “Addressing interpretability and cold-start in matrix factorization for recommender systems,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 7, pp. 1253–1266, 2019.
  20. Y. He, C. Wang, and C. Jiang, “Correlated matrix factorization for recommendation with implicit feedback,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 3, pp. 451–464, 2019.
  21. X. He, J. Tang, X. Du, R. Hong, T. Ren, and T.-S. Chua, “Fast matrix factorization with nonuniform weights on missing data,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 8, pp. 2791–2804, 2020.
  22. L. Hu, L. Cao, J. Cao, Z. Gu, G. Xu, and D. Yang, “Learning informative priors from heterogeneous domains to improve recommendation in cold-start user domains,” ACM Trans. Inf. Syst., pp. 13:1–13:37, 2016.
  23. Y. Shi, M. A. Larson, and A. Hanjalic, “Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges,” ACM Comput. Surv., vol. 47, no. 1, pp. 3:1–3:45, 2014.
  24. Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering model,” in KDD, 2008, pp. 426–434.
  25. C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, “Heterogeneous information network embedding for recommendation,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 357–370, 2019.
  26. H.-J. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix factorization models for recommender systems.” in IJCAI, 2017, pp. 3203–3209.
  27. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in WWW, 2017, pp. 173–182.
  28. H. Liu, F. Wu, W. Wang, X. Wang, P. Jiao, C. Wu, and X. Xie, “NRPA: neural recommendation with personalized attention,” in SIGIR, 2019, pp. 1233–1236.
  29. C.-D. Wang, W.-D. Xi, L. Huang, Y.-Y. Zheng, Z.-Y. Hu, and J.-H. Lai, “A BP neural network based recommender framework with attention mechanism,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 7, pp. 3029–3043, 2022.
  30. Y.-C. Chen, T. Thaipisutikul, and T. K. Shih, “A learning-based POI recommendation with spatiotemporal context awareness,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2453–2466, 2022.
  31. Z.-H. Deng, L. Huang, C.-D. Wang, J.-H. Lai, and P. S.Yu, “DeepCF: A unified framework of representation learning and matching function learning in recommender system,” in AAAI, 2019, pp. 61–68.
  32. C. L. P. Chen, Z. Liu, and F. Shuang, “Universal approximation capability of broad learning system and its structural variations,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 4, pp. 1191–1204, 2019.
  33. J. Huang, C. Vong, G. Wang, W. Qian, Y. Zhou, and C. L. P. Chen, “Joint label enhancement and label distribution learning via stacked graph regularization-based polynomial fuzzy broad learning system,” IEEE Trans. Fuzzy Syst., vol. 31, no. 9, pp. 3290–3304, 2023.
  34. K. Bai, X. Zhu, S. Wen, R. Zhang, and W. Zhang, “Broad learning based dynamic fuzzy inference system with adaptive structure and interpretable fuzzy rules,” IEEE Trans. Fuzzy Syst., vol. 30, no. 8, pp. 3270–3283, 2022.
  35. W. Dai, R. Zhang, Q. Wang, Y. Cheng, and X. Wang, “Two-dimensional broad learning system for data analytic,” IEEE Trans. Artif. Intell., vol. 2, no. 6, pp. 594–607, 2021.
  36. H. Xia, J. Tang, W. Yu, and J. Qiao, “Tree broad learning system for small data modeling,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.
  37. X.-R. Gong, T. Zhang, C. L. P. Chen, and Z. Liu, “Research review for broad learning system: Algorithms, theory, and applications,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 8922–8950, 2022.
  38. H. Wang, Y. Cheng, C. L. P. Chen, and X. Wang, “Broad graph convolutional neural network and its application in hyperspectral image classification,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 2, pp. 610–616, 2023.
  39. R. Xie, C.-M. Vong, C. L. P. Chen, and S. Wang, “Dynamic network structure: Doubly stacking broad learning systems with residuals and simpler linear model transmission,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 6, pp. 1378–1395, 2022.
  40. A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” in NIPS, 2008, pp. 1257–1264.
  41. L. Xia, C. Huang, and C. Zhang, “Self-supervised hypergraph transformer for recommender systems,” in KDD, 2022, pp. 2100–2109.
  42. X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph collaborative filtering,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, B. Piwowarski, M. Chevalier, É. Gaussier, Y. Maarek, J. Nie, and F. Scholer, Eds.   ACM, 2019, pp. 165–174.
  43. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying and powering graph convolution network for recommendation,” in Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, J. X. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen, and Y. Liu, Eds.   ACM, 2020, pp. 639–648.
  44. G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003.
  45. C.-D. Wang, Z.-H. Deng, J.-H. Lai, and P. S. Yu, “Serendipitous recommendation in e-commerce using innovator-based collaborative filtering,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2678–2692, 2019.
  46. R. M. Bell and Y. Koren, “Scalable collaborative filtering with jointly derived neighborhood interpolation weights,” in ICDM, 2007, pp. 43–52.
  47. R. Jia, M. Jin, and C. Liu, “Using temporal information to improve predictive accuracy of collaborative filtering algorithms,” in APWeb, 2010, pp. 301–306.
  48. B. K. Patra, R. Launonen, V. Ollikainen, and S. Nandi, “A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data,” Knowledge-Based Systems, pp. 163–177, 2015.
  49. Z. Zheng, X. Li, M. Tang, F. Xie, and M. R. Lyu, “Web service QoS prediction via collaborative filtering: A survey,” IEEE Trans. Serv. Comput., vol. 15, no. 4, pp. 2455–2472, 2022.
  50. F. Xue, X. He, X. Wang, J. Xu, K. Liu, and R. Hong, “Deep item-based collaborative filtering for top-n recommendation,” ACM Trans. Inf. Syst., vol. 37, no. 3, pp. 33:1–33:25, 2019.
  51. M. Fu, H. Qu, Z. Yi, L. Lu, and Y. Liu, “A novel deep learning-based collaborative filtering model for recommendation system,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 1084–1096, 2019.
  52. J. Han, L. Zheng, Y. Xu, B. Zhang, F. Zhuang, P. S. Yu, and W. Zuo, “Adaptive deep modeling of users and items using side information for recommendation,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 3, pp. 737–748, 2020.
  53. H. Liu, B. Yang, and D. Li, “Graph collaborative filtering based on dual-message propagation mechanism,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 352–364, 2023.
  54. S.-T. Zhong, L. Huang, C.-D. Wang, J.-H. Lai, and P. S. Yu, “An autoencoder framework with attention mechanism for cross-domain recommendation,” IEEE Trans. Cybern., vol. 52, no. 6, pp. 5229–5241, 2022.
  55. L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation,” IEEE Trans. Knowl. Data Eng., 2022.
  56. J. Xia, D. Li, H. Gu, T. Lu, P. Zhang, and N. Gu, “Incremental graph convolutional network for collaborative filtering,” in CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, and H. Tong, Eds.   ACM, 2021, pp. 2170–2179.
  57. B. Sheng, P. Li, Y. Zhang, L. Mao, and C. L. P. Chen, “GreenSea: Visual soccer analysis using broad learning system,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1463–1477, 2021.
  58. J. Du, C.-M. Vong, and C. L. P. Chen, “Novel efficient RNN and lstm-like architectures: Recurrent and gated broad learning systems and their applications for text classification,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1586–1597, 2021.
  59. J. Huang, C.-M. Vong, G. Wang, W. Qian, Y. Zhou, and C. P. Chen, “Joint label enhancement and label distribution learning via stacked graph regularization-based polynomial fuzzy broad learning system,” IEEE Trans. Fuzzy Syst., 2023.
  60. T. Wang, M. Zhang, J. Zhang, W. W. Y. Ng, and C. L. P. Chen, “BASS: Broad network based on localized stochastic sensitivity,” IEEE Trans. Neural Networks Learn. Syst., 2023.
  61. X.-K. Cao, C.-D. Wang, J.-H. Lai, Q. Huang, and C. L. P. Chen, “Multiparty secure broad learning system for privacy preserving,” IEEE Trans. Cybern., 2023.
  62. H. Xia, J. Tang, W. Yu, and J. Qiao, “Online measurement of dioxin emission in solid waste incineration using fuzzy broad learning,” IEEE Trans. Ind. Informatics, 2023.
  63. Y.-H. Pao and Y. Takefuji, “Functional-link net computing: Theory, system architecture, and functionalities,” Computer, vol. 25, no. 5, pp. 76–79, 1992.
  64. R. He and J. J. McAuley, “Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering,” in WWW, 2016, pp. 507–517.
Citations (3)

Summary

We haven't generated a summary for this paper yet.