Papers
Topics
Authors
Recent
2000 character limit reached

Graph Convolutional Network Based Semi-Supervised Learning on Multi-Speaker Meeting Data

Published 25 Apr 2022 in eess.AS and cs.SD | (2204.11501v1)

Abstract: Unsupervised clustering on speakers is becoming increasingly important for its potential uses in semi-supervised learning. In reality, we are often presented with enormous amounts of unlabeled data from multi-party meetings and discussions. An effective unsupervised clustering approach would allow us to significantly increase the amount of training data without additional costs for annotations. Recently, methods based on graph convolutional networks (GCN) have received growing attention for unsupervised clustering, as these methods exploit the connectivity patterns between nodes to improve learning performance. In this work, we present a GCN-based approach for semi-supervised learning. Given a pre-trained embedding extractor, a graph convolutional network is trained on the labeled data and clusters unlabeled data with "pseudo-labels". We present a self-correcting training mechanism that iteratively runs the cluster-train-correct process on pseudo-labels. We show that this proposed approach effectively uses unlabeled data and improves speaker recognition accuracy.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.