Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the empty balls of a critical super-Brownian motion (2204.11468v1)

Published 25 Apr 2022 in math.PR

Abstract: Let ${X_t}{t\geq0}$ be a $d$-dimensional critical super-Brownian motion started from a Poisson random measure whose intensity is the Lebesgue measure. Denote by $R_t:=\sup{u>0: X_t({x\in\mathbb{R}d:|x|< u})=0}$ the radius of the largest empty ball centered at the origin of $X_t$. In this work, we prove that for $r>0$, $$\lim{t\to\infty}\mathbb{P}\left(\frac{R_t}{t{(1/d)\wedge(3-d)+}}\geq r\right)=e{-A_d(r)},$$ where $A_d(r)$ satisfies $\lim_{r\to\infty}\frac{A_d(r)}{r{|d-2|+d\ind_{{d=2}}}}=C$ for some $C\in(0,\infty)$ depending only on $d$.

Summary

We haven't generated a summary for this paper yet.