Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power Enhancement and Phase Transitions for Global Testing of the Mixed Membership Stochastic Block Model (2204.11109v1)

Published 23 Apr 2022 in math.ST and stat.TH

Abstract: The mixed-membership stochastic block model (MMSBM) is a common model for social networks. Given an $n$-node symmetric network generated from a $K$-community MMSBM, we would like to test $K=1$ versus $K>1$. We first study the degree-based $\chi2$ test and the orthodox Signed Quadrilateral (oSQ) test. These two statistics estimate an order-2 polynomial and an order-4 polynomial of a "signal" matrix, respectively. We derive the asymptotic null distribution and power for both tests. However, for each test, there exists a parameter regime where its power is unsatisfactory. It motivates us to propose a power enhancement (PE) test to combine the strengths of both tests. We show that the PE test has a tractable null distribution and improves the power of both tests. To assess the optimality of PE, we consider a randomized setting, where the $n$ membership vectors are independently drawn from a distribution on the standard simplex. We show that the success of global testing is governed by a quantity $\beta_n(K,P,h)$, which depends on the community structure matrix $P$ and the mean vector $h$ of memberships. For each given $(K, P, h)$, a test is called $\textit{ optimal}$ if it distinguishes two hypotheses when $\beta_n(K, P,h)\to\infty$. A test is called $\textit{optimally adaptive}$ if it is optimal for all $(K, P, h)$. We show that the PE test is optimally adaptive, while many existing tests are only optimal for some particular $(K, P, h)$, hence, not optimally adaptive.

Summary

We haven't generated a summary for this paper yet.