Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimension free non-asymptotic bounds on the accuracy of high dimensional Laplace approximation (2204.11038v3)

Published 23 Apr 2022 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: This note attempts to revisit the classical results on Laplace approximation in a modern non-asymptotic and dimension free form. Such an extension is motivated by applications to high dimensional statistical and optimization problems. The established results provide explicit non-asymptotic bounds on the quality of a Gaussian approximation of the posterior distribution in total variation distance in terms of the so called \emph{effective dimension} ( p_G ). This value is defined as interplay between information contained in the data and in the prior distribution. In the contrary to prominent Bernstein - von Mises results, the impact of the prior is not negligible and it allows to keep the effective dimension small or moderate even if the true parameter dimension is huge or infinite. We also address the issue of using a Gaussian approximation with inexact parameters with the focus on replacing the Maximum a Posteriori (MAP) value by the posterior mean and design the algorithm of Bayesian optimization based on Laplace iterations. The results are specified to the case of nonlinear inverse problem.

Citations (19)

Summary

We haven't generated a summary for this paper yet.