Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CycleSense: Detecting Near Miss Incidents in Bicycle Traffic from Mobile Motion Sensors (2204.10416v2)

Published 21 Apr 2022 in cs.LG, cs.CY, and eess.SP

Abstract: In cities worldwide, cars cause health and traffic problems whichcould be partly mitigated through an increased modal share of bicycles. Many people, however, avoid cycling due to a lack of perceived safety. For city planners, addressing this is hard as they lack insights intowhere cyclists feel safe and where they do not. To gain such insights,we have in previous work proposed the crowdsourcing platform SimRa,which allows cyclists to record their rides and report near miss incidentsvia a smartphone app. In this paper, we present CycleSense, a combination of signal pro-cessing and Machine Learning techniques, which partially automatesthe detection of near miss incidents, thus making the reporting of nearmiss incidents easier. Using the SimRa data set, we evaluate CycleSenseby comparing it to a baseline method used by SimRa and show that itsignificantly improves incident detection.

Citations (9)

Summary

We haven't generated a summary for this paper yet.