Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Domain Adaptation for Cardiac Segmentation: Towards Structure Mutual Information Maximization (2204.09334v3)

Published 20 Apr 2022 in eess.IV and cs.CV

Abstract: Unsupervised domain adaptation approaches have recently succeeded in various medical image segmentation tasks. The reported works often tackle the domain shift problem by aligning the domain-invariant features and minimizing the domain-specific discrepancies. That strategy works well when the difference between a specific domain and between different domains is slight. However, the generalization ability of these models on diverse imaging modalities remains a significant challenge. This paper introduces UDA-VAE++, an unsupervised domain adaptation framework for cardiac segmentation with a compact loss function lower bound. To estimate this new lower bound, we develop a novel Structure Mutual Information Estimation (SMIE) block with a global estimator, a local estimator, and a prior information matching estimator to maximize the mutual information between the reconstruction and segmentation tasks. Specifically, we design a novel sequential reparameterization scheme that enables information flow and variance correction from the low-resolution latent space to the high-resolution latent space. Comprehensive experiments on benchmark cardiac segmentation datasets demonstrate that our model outperforms previous state-of-the-art qualitatively and quantitatively. The code is available at https://github.com/LOUEY233/Toward-Mutual-Information}{https://github.com/LOUEY233/Toward-Mutual-Information

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Changjie Lu (9 papers)
  2. Shen Zheng (18 papers)
  3. Gaurav Gupta (44 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.