Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterexamples to the extendibility of positive unital norm-one maps (2204.08819v1)

Published 19 Apr 2022 in math.OA, math.FA, and quant-ph

Abstract: Arveson's extension theorem guarantees that every completely positive map defined on an operator system can be extended to a completely positive map defined on the whole C*-algebra containing it. An analogous statement where complete positivity is replaced by positivity is known to be false. A natural question is whether extendibility could still hold for positive maps satisfying stronger conditions, such as being unital and norm 1. Here we provide three counterexamples showing that positive norm-one unital maps defined on an operator subsystem of a matrix algebra cannot be extended to a positive map on the full matrix algebra. The first counterexample is an unextendible positive unital map with unit norm, the second counterexample is an unextendible positive unital isometry on a real operator space, and the third counterexample is an unextendible positive unital isometry on a complex operator space.

Summary

We haven't generated a summary for this paper yet.