Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LwHBench: A low-level hardware component benchmark and dataset for Single Board Computers (2204.08516v2)

Published 18 Apr 2022 in cs.PF

Abstract: In today's computing environment, where AI and data processing are moving toward the Internet of Things (IoT) and Edge computing paradigms, benchmarking resource-constrained devices is a critical task to evaluate their suitability and performance. Between the employed devices, Single-Board Computers arise as multi-purpose and affordable systems. The literature has explored Single-Board Computers performance when running high-level benchmarks specialized in particular application scenarios, such as AI or medical applications. However, lower-level benchmarking applications and datasets are needed to enable new Edge-based AI solutions for network, system and service management based on device and component performance, such as individual device identification. Thus, this paper presents LwHBench, a low-level hardware benchmarking application for Single-Board Computers that measures the performance of CPU, GPU, Memory and Storage taking into account the component constraints in these types of devices. LwHBench has been implemented for Raspberry Pi devices and run for 100 days on a set of 45 devices to generate an extensive dataset that allows the usage of AI techniques in scenarios where performance data can help in the device management process. Besides, to demonstrate the inter-scenario capability of the dataset, a series of AI-enabled use cases about device identification and context impact on performance are presented as exploration of the published data. Finally, the benchmark application has been adapted and applied to an agriculture-focused scenario where three RockPro64 devices are present.

Citations (6)

Summary

We haven't generated a summary for this paper yet.