Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluations of some series of the type $\sum_{k=0}^\infty(ak+b)x^k/\binom{mk}{nk}$ (2204.08275v6)

Published 11 Apr 2022 in math.NT and math.CO

Abstract: In this paper, via the beta function we evaluate some series of the type $\sum_{k=0}\infty(ak+b)xk/\binom{mk}{nk}$. We completely determine the values of $$\sum_{k=1}\infty\frac {krxk}{\binom{3k}k}\ \left(-\frac{27}4<x<\frac{27}4\right)\ \text{and}\ \sum_{k=1}\infty\frac {krxk}{\binom{4k}{2k}}\ (-16<x<16)$$ for $r=0,\pm1$. For example, we prove that $$\sum_{k=0}\infty\frac{(49k+1)8k}{3k\binom{3k}k}=81+16\sqrt3\,\pi \ \ \text{and}\ \ \sum_{k=0}\infty\frac{10k-1}{\binom{4k}{2k}}=\frac{4\sqrt 3}{27}\pi.$$ We also establish the following efficient formula for computing $\log n$ with $1<n\le 85/4$: \begin{align*} &\sum_{k=0}\infty\frac{(2(n2+6n+1)2(n2-10n+1)k+P(n))(n-1){4k}} {(-n)k(n+1){2k}\binom{4k}{2k}}\ \ \ &=6n(n+1)(n-1)3\log n-32n(n+1)2(n2-4n+1), \end{align*} where $$P(n):=n6-58n5+159n4+52n3+159n2-58n+1.$$

Summary

We haven't generated a summary for this paper yet.