Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phishing Fraud Detection on Ethereum using Graph Neural Network (2204.08194v1)

Published 18 Apr 2022 in cs.SI

Abstract: Blockchain has widespread applications in the financial field but has also attracted increasing cybercrimes. Recently, phishing fraud has emerged as a major threat to blockchain security, calling for the development of effective regulatory strategies. Nowadays network science has been widely used in modeling Ethereum transaction data, further introducing the network representation learning technology to analyze the transaction patterns. In this paper, we consider phishing detection as a graph classification task and propose an end-to-end Phishing Detection Graph Neural Network framework (PDGNN). Specifically, we first construct a lightweight Ethereum transaction network and extract transaction subgraphs of collected phishing accounts. Then we propose an end-to-end detection model based on Chebyshev-GCN to precisely distinguish between normal and phishing accounts. Extensive experiments on five Ethereum datasets demonstrate that our PDGNN significantly outperforms general phishing detection methods and scales well in large transaction networks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.