Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy-based Active Learning for Object Detection with Progressive Diversity Constraint (2204.07965v1)

Published 17 Apr 2022 in cs.CV

Abstract: Active learning is a promising alternative to alleviate the issue of high annotation cost in the computer vision tasks by consciously selecting more informative samples to label. Active learning for object detection is more challenging and existing efforts on it are relatively rare. In this paper, we propose a novel hybrid approach to address this problem, where the instance-level uncertainty and diversity are jointly considered in a bottom-up manner. To balance the computational complexity, the proposed approach is designed as a two-stage procedure. At the first stage, an Entropy-based Non-Maximum Suppression (ENMS) is presented to estimate the uncertainty of every image, which performs NMS according to the entropy in the feature space to remove predictions with redundant information gains. At the second stage, a diverse prototype (DivProto) strategy is explored to ensure the diversity across images by progressively converting it into the intra-class and inter-class diversities of the entropy-based class-specific prototypes. Extensive experiments are conducted on MS COCO and Pascal VOC, and the proposed approach achieves state of the art results and significantly outperforms the other counterparts, highlighting its superiority.

Citations (51)

Summary

We haven't generated a summary for this paper yet.