Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

What If: Generating Code to Answer Simulation Questions (2204.07835v1)

Published 16 Apr 2022 in cs.CL and cs.LG

Abstract: Many texts, especially in chemistry and biology, describe complex processes. We focus on texts that describe a chemical reaction process and questions that ask about the process's outcome under different environmental conditions. To answer questions about such processes, one needs to understand the interactions between the different entities involved in the process and to simulate their state transitions during the process execution under different conditions. A state transition is defined as the memory modification the program does to the variables during the execution. We hypothesize that generating code and executing it to simulate the process will allow answering such questions. We, therefore, define a domain-specific language (DSL) to represent processes. We contribute to the community a unique dataset curated by chemists and annotated by computer scientists. The dataset is composed of process texts, simulation questions, and their corresponding computer codes represented by the DSL.We propose a neural program synthesis approach based on reinforcement learning with a novel state-transition semantic reward. The novel reward is based on the run-time semantic similarity between the predicted code and the reference code. This allows simulating complex process transitions and thus answering simulation questions. Our approach yields a significant boost in accuracy for simulation questions: 88\% accuracy as opposed to 83\% accuracy of the state-of-the-art neural program synthesis approaches and 54\% accuracy of state-of-the-art end-to-end text-based approaches.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.