Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ideal class groups of number fields and Bloch-Kato's Tate-Shafarevich groups for symmetric powers of elliptic curves (2204.07759v1)

Published 16 Apr 2022 in math.NT

Abstract: For an elliptic curve $E$ over $\mathbb{Q}$, putting $K=\mathbb{Q}(E[p])$ which is the $p$-th division field of $E$ for an odd prime $p$, we study the ideal class group $\mathrm{Cl}_K$ of $K$ as a $\mathrm{Gal}(K/\mathbb{Q})$-module. More precisely, for any $j$ with $1\leqslant j \leqslant p-2$, we give a condition that $\mathrm{Cl}_K\otimes \mathbb{F}_p$ has the symmetric power $\mathrm{Sym}j E[p]$ of $E[p]$ as its quotient $\mathrm{Gal}(K/\mathbb{Q})$-module, in terms of Bloch-Kato's Tate-Shafarevich group of $\mathrm{Sym}j V_p E$. Here $V_p E$ denotes the rational $p$-adic Tate module of $E$. This is a partial generalization of a result of Prasad and Shekhar for the case $j=1$.

Summary

We haven't generated a summary for this paper yet.