Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Tree Loss: Improving Generalization with Many Classes (2204.07727v1)

Published 16 Apr 2022 in cs.LG and cs.AI

Abstract: Multi-class classification problems often have many semantically similar classes. For example, 90 of ImageNet's 1000 classes are for different breeds of dog. We should expect that these semantically similar classes will have similar parameter vectors, but the standard cross entropy loss does not enforce this constraint. We introduce the tree loss as a drop-in replacement for the cross entropy loss. The tree loss re-parameterizes the parameter matrix in order to guarantee that semantically similar classes will have similar parameter vectors. Using simple properties of stochastic gradient descent, we show that the tree loss's generalization error is asymptotically better than the cross entropy loss's. We then validate these theoretical results on synthetic data, image data (CIFAR100, ImageNet), and text data (Twitter).

Summary

We haven't generated a summary for this paper yet.