Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying and Measuring Token-Level Sentiment Bias in Pre-trained Language Models with Prompts (2204.07289v1)

Published 15 Apr 2022 in cs.CL

Abstract: Due to the superior performance, large-scale pre-trained LLMs (PLMs) have been widely adopted in many aspects of human society. However, we still lack effective tools to understand the potential bias embedded in the black-box models. Recent advances in prompt tuning show the possibility to explore the internal mechanism of the PLMs. In this work, we propose two token-level sentiment tests: Sentiment Association Test (SAT) and Sentiment Shift Test (SST) which utilize the prompt as a probe to detect the latent bias in the PLMs. Our experiments on the collection of sentiment datasets show that both SAT and SST can identify sentiment bias in PLMs and SST is able to quantify the bias. The results also suggest that fine-tuning can possibly augment the existing bias in PLMs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.