Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual Swin Transformer Channel Attention Network for Image Demosaicing (2204.07098v1)

Published 14 Apr 2022 in cs.CV and eess.IV

Abstract: Image demosaicing is problem of interpolating full- resolution color images from raw sensor (color filter array) data. During last decade, deep neural networks have been widely used in image restoration, and in particular, in demosaicing, attaining significant performance improvement. In recent years, vision transformers have been designed and successfully used in various computer vision applications. One of the recent methods of image restoration based on a Swin Transformer (ST), SwinIR, demonstrates state-of-the-art performance with a smaller number of parameters than neural network-based methods. Inspired by the success of SwinIR, we propose in this paper a novel Swin Transformer-based network for image demosaicing, called RSTCANet. To extract image features, RSTCANet stacks several residual Swin Transformer Channel Attention blocks (RSTCAB), introducing the channel attention for each two successive ST blocks. Extensive experiments demonstrate that RSTCANet out- performs state-of-the-art image demosaicing methods, and has a smaller number of parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wenzhu Xing (1 paper)
  2. Karen Egiazarian (24 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.