Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning topological defects formation with neural networks in a quantum phase transition (2204.06769v2)

Published 14 Apr 2022 in cond-mat.dis-nn, cs.LG, hep-th, and quant-ph

Abstract: Neural networks possess formidable representational power, rendering them invaluable in solving complex quantum many-body systems. While they excel at analyzing static solutions, nonequilibrium processes, including critical dynamics during a quantum phase transition, pose a greater challenge for neural networks. To address this, we utilize neural networks and machine learning algorithms to investigate the time evolutions, universal statistics, and correlations of topological defects in a one-dimensional transverse-field quantum Ising model. Specifically, our analysis involves computing the energy of the system during a quantum phase transition following a linear quench of the transverse magnetic field strength. The excitation energies satisfy a power-law relation to the quench rate, indicating a proportional relationship between the excitation energy and the kink numbers. Moreover, we establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate, indicating a binomial distribution of the kinks. Finally, the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems (Courier Corporation, 2012).
  2. S. R. White, Density matrix formulation for quantum renormalization groups, Physical Review Letters 69, 2863 (1992).
  3. D. Ceperley and B. Alder, Quantum monte carlo, Science 231, 555 (1986).
  4. M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations, Physical Review Letters 94, 170201 (2005).
  5. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436 (2015).
  6. J. Lam and Y.-Z. You, Machine learning statistical gravity from multi-region entanglement entropy, Physical Review Research 3, 043199 (2021).
  7. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational physics 378, 686 (2019).
  8. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 13, 431 (2017).
  9. H.-Q. Shi, X.-Y. Sun, and D.-F. Zeng, Neural-network quantum state of transverse-field ising model, Communications in Theoretical Physics 71, 1379 (2019).
  10. C.-Y. Park and M. J. Kastoryano, Geometry of learning neural quantum states, Physical Review Research 2, 023232 (2020).
  11. G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
  12. M. Schmitt and M. Heyl, Quantum many-body dynamics in two dimensions with artificial neural networks, Physical Review Letters 125, 100503 (2020).
  13. M. J. Hartmann and G. Carleo, Neural-network approach to dissipative quantum many-body dynamics, Physical Review Letters 122, 250502 (2019).
  14. M. Schmitt and M. Heyl, Quantum dynamics in transverse-field ising models from classical networks, SciPost Physics 4, 013 (2018).
  15. S. Czischek, M. Gärttner, and T. Gasenzer, Quenches near ising quantum criticality as a challenge for artificial neural networks, Physical Review B 98, 024311 (2018).
  16. G. Fabiani and J. Mentink, Investigating ultrafast quantum magnetism with machine learning, SciPost Physics 7, 004 (2019).
  17. M. Reh, M. Schmitt, and M. Gärttner, Time-dependent variational principle for open quantum systems with artificial neural networks, Physical Review Letters 127, 230501 (2021).
  18. I. L. Gutiérrez and C. B. Mendl, Real time evolution with neural-network quantum states, Quantum 6, 627 (2022).
  19. T. W. Kibble, Topology of cosmic domains and strings, Journal of Physics A: Mathematical and General 9, 1387 (1976).
  20. W. H. Zurek, Cosmological experiments in superfluid helium?, Nature 317, 505 (1985).
  21. W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Physical Review Letters 95, 105701 (2005).
  22. A. Del Campo, Universal statistics of topological defects formed in a quantum phase transition, Physical Review Letters 121, 200601 (2018).
  23. E. Gillman and A. Rajantie, Kibble zurek mechanism of topological defect formation in quantum field theory with matrix product states, Physical Review D 97, 094505 (2018).
  24. J. Sonner, A. del Campo, and W. H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor, Nature Commun. 6, 7406 (2015), arXiv:1406.2329 [hep-th] .
  25. P. M. Chesler, A. M. Garcia-Garcia, and H. Liu, Defect Formation beyond Kibble-Zurek Mechanism and Holography, Phys. Rev. X 5, 021015 (2015), arXiv:1407.1862 [hep-th] .
  26. H.-B. Zeng, C.-Y. Xia, and H.-Q. Zhang, Topological defects as relics of spontaneous symmetry breaking from black hole physics, JHEP 03, 136.
  27. Z.-H. Li, H.-Q. Shi, and H.-Q. Zhang, Holographic topological defects in a ring: role of diverse boundary conditions, JHEP 05, 056.
  28. S. Sachdev, Quantum phase transitions (Cambridge university press, 2011).
  29. J. Dziarmaga, Dynamics of a quantum phase transition: Exact solution of the quantum ising model, Physical Review Letters 95, 245701 (2005).
  30. R. J. Nowak and J. Dziarmaga, Quantum kibble-zurek mechanism: Kink correlations after a quench in the quantum ising chain, Physical Review B 104, 075448 (2021).
  31. A. D. King et al., Coherent quantum annealing in a programmable 2,000 qubit Ising chain, Nature Phys. 18, 1324 (2022), arXiv:2202.05847 [quant-ph] .
  32. S. Sorella, Generalized lanczos algorithm for variational quantum monte carlo, Physical Review B 64, 024512 (2001).
  33. F. J. Gómez-Ruiz, J. J. Mayo, and A. Del Campo, Full counting statistics of topological defects after crossing a phase transition, Physical Review Letters 124, 240602 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.