Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Finite Volume Method for Uncertainty Quantification of Transient Flow in Gas Pipeline Networks (2204.06431v1)

Published 13 Apr 2022 in math.NA and cs.NA

Abstract: We develop a weakly intrusive framework to simulate the propagation of uncertainty in solutions of generic hyperbolic partial differential equation systems on graph-connected domains with nodal coupling and boundary conditions. The method is based on the Stochastic Finite Volume (SFV) approach, and can be applied for uncertainty quantification (UQ) of the dynamical state of fluid flow over actuated transport networks. The numerical scheme has specific advantages for modeling intertemporal uncertainty in time-varying boundary parameters, which cannot be characterized by strict upper and lower (interval) bounds. We describe the scheme for a single pipe, and then formulate the controlled junction Riemann problem (JRP) that enables the extension to general network structures. We demonstrate the method's capabilities and performance characteristics using a standard benchmark test network.

Citations (6)

Summary

We haven't generated a summary for this paper yet.