Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electric Motor Design Optimization: A Convex Surrogate Modeling Approach (2204.06422v2)

Published 13 Apr 2022 in eess.SY and cs.SY

Abstract: This paper instantiates a convex electric powertrain design optimization framework, bridging the gap between high-level powertrain sizing and low-level components design. We focus on the electric motor and transmission of electric vehicles, using a scalable convex motor model based on surrogate modeling techniques. Specifically, we first select relevant motor design variables and evaluate high-fidelity samples according to a predefined sampling plan. Second, using the sample data, we identify a convex model of the motor, which predicts its losses as a function of the operating point and the design parameters. We also identify models of the remaining components of the powertrain, namely a battery and a fixed-gear transmission. Third, we frame the minimum-energy consumption design problem over a drive cycle as a second-order conic program that can be efficiently solved with optimality guarantees. Finally, we showcase our framework in a case study for a compact family car and compute the optimal motor design and transmission ratio. We validate the accuracy of our models with a high-fidelity simulation tool and calculate the drift in battery energy consumption. We show that our model can capture the optimal operating line and the error in battery energy consumption is low. Overall, our framework can provide electric motor design experts with useful starting points for further design optimization.

Citations (5)

Summary

We haven't generated a summary for this paper yet.