Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An intrinsic characterization of moment functionals in the compact case (2204.05630v1)

Published 12 Apr 2022 in math.FA

Abstract: We consider the class of all linear functionals $L$ on a unital commutative real algebra $A$ that can be represented as an integral w.r.t. to a Radon measure with compact support in the character space of $A$. Exploiting a recent generalization of the classical Nussbaum theorem, we establish a new characterization of this class of moment functionals solely in terms of a growth condition intrinsic to the given linear functional. To the best of our knowledge, our result is the first to exactly identify the compact support of the representing Radon measure. We also describe the compact support in terms of the largest Archimedean quadratic module on which $L$ is non-negative and in terms of the smallest submultiplicative seminorm w.r.t. which $L$ is continuous. Moreover, we derive a formula for computing the measure of each singleton in the compact support, which in turn gives a necessary and sufficient condition for the support to be a finite set. Finally, some aspects related to our growth condition for topological algebras are also investigated.

Summary

We haven't generated a summary for this paper yet.