Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Data Augmentation Selection and Parametrization in Contrastive Self-Supervised Speech Representation Learning (2204.04170v1)

Published 8 Apr 2022 in eess.AS, cs.LG, cs.SD, and eess.SP

Abstract: Contrastive learning enables learning useful audio and speech representations without ground-truth labels by maximizing the similarity between latent representations of similar signal segments. In this framework various data augmentation techniques are usually exploited to help enforce desired invariances within the learned representations, improving performance on various audio tasks thanks to more robust embeddings. Now, selecting the most relevant augmentations has proven crucial for better downstream performances. Thus, this work introduces a conditional independance-based method which allows for automatically selecting a suitable distribution on the choice of augmentations and their parametrization from a set of predefined ones, for contrastive self-supervised pre-training. This is performed with respect to a downstream task of interest, hence saving a costly hyper-parameter search. Experiments performed on two different downstream tasks validate the proposed approach showing better results than experimenting without augmentation or with baseline augmentations. We furthermore conduct a qualitative analysis of the automatically selected augmentations and their variation according to the considered final downstream dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Salah Zaiem (17 papers)
  2. Titouan Parcollet (49 papers)
  3. Slim Essid (37 papers)
Citations (6)