Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration in Lotka-Volterra parabolic equations: an asymptotic-preserving scheme (2204.04146v1)

Published 8 Apr 2022 in math.AP, cs.NA, and math.NA

Abstract: In this paper, we introduce and analyze an asymptotic-preserving scheme for Lotka-Volterra parabolic equations. It is a class of nonlinear and nonlocal stiff equations, which describes the evolution of a population structured with phenotypic trait. In a regime of long time and small mutations, the population concentrates at a set of dominant traits. The dynamics of this concentration is described by a constrained Hamilton-Jacobi equation, which is a system coupling a Hamilton-Jacobi equation with a Lagrange multiplier determined by a constraint. This coupling makes the equation nonlocal. Moreover, the constraint does not enjoy much regularity, since it can have jumps. The scheme we propose is convergent in all the regimes, and enjoys stability in the long time and small mutations limit. Moreover, we prove that the limiting scheme converges towards the viscosity solution of the constrained Hamilton-Jacobi equation, despite the lack of regularity of the constraint. The theoretical analysis of the schemes is illustrated and complemented with numerical simulations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.