Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras (2204.04123v3)

Published 8 Apr 2022 in math.RT and math.QA

Abstract: Let $\mathfrak{g}$ be a complex simple Lie algebra and $U_qL\mathfrak{g}$ the corresponding quantum affine algebra. We construct a functor ${}{\theta}{\sf F}$ between finite-dimensional modules over a quantum symmetric pair of affine type $U_q\mathfrak{k}\subset U_qL{\mathfrak{g}}$ and an orientifold KLR algebra arising from a framed quiver with a contravariant involution, providing a boundary analogue of Kang-Kashiwara-Kim-Oh generalized Schur-Weyl duality. With respect to their construction, our combinatorial model is further enriched with the poles of a trigonometric K-matrix intertwining the action of $U_q\mathfrak{k}$ on finite-dimensional $U_qL{\mathfrak{g}}$-modules. By construction, ${}{\theta}{\sf F}$ is naturally compatible with the Kang-Kashiwara-Kim-Oh functor in that, while the latter is a functor of monoidal categories, ${}{\theta}{\sf F}$ is a functor of module categories. Relying on a suitable isomorphism `a la Brundan-Kleshchev-Rouquier, we prove that ${}{\theta}{\sf F}$ recovers the Schur-Weyl dualities due to Fan-Lai-Li-Luo-Wang-Watanabe in quasi-split type $\sf AIII$.

Summary

We haven't generated a summary for this paper yet.