Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using negative controls to identify causal effects with invalid instrumental variables (2204.04119v4)

Published 8 Apr 2022 in stat.ME, math.ST, and stat.TH

Abstract: Many proposals for the identification of causal effects require an instrumental variable that satisfies strong, untestable unconfoundedness and exclusion restriction assumptions. In this paper, we show how one can potentially identify causal effects under violations of these assumptions by harnessing a negative control population or outcome. This strategy allows one to leverage sup-populations for whom the exposure is degenerate, and requires that the instrument-outcome association satisfies a certain parallel trend condition. We develop the semiparametric efficiency theory for a general instrumental variable model, and obtain a multiply robust, locally efficient estimator of the average treatment effect in the treated. The utility of the estimators is demonstrated in simulation studies and an analysis of the Life Span Study.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com