Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CD$^2$-pFed: Cyclic Distillation-guided Channel Decoupling for Model Personalization in Federated Learning (2204.03880v1)

Published 8 Apr 2022 in cs.CV and cs.LG

Abstract: Federated learning (FL) is a distributed learning paradigm that enables multiple clients to collaboratively learn a shared global model. Despite the recent progress, it remains challenging to deal with heterogeneous data clients, as the discrepant data distributions usually prevent the global model from delivering good generalization ability on each participating client. In this paper, we propose CD2-pFed, a novel Cyclic Distillation-guided Channel Decoupling framework, to personalize the global model in FL, under various settings of data heterogeneity. Different from previous works which establish layer-wise personalization to overcome the non-IID data across different clients, we make the first attempt at channel-wise assignment for model personalization, referred to as channel decoupling. To further facilitate the collaboration between private and shared weights, we propose a novel cyclic distillation scheme to impose a consistent regularization between the local and global model representations during the federation. Guided by the cyclical distillation, our channel decoupling framework can deliver more accurate and generalized results for different kinds of heterogeneity, such as feature skew, label distribution skew, and concept shift. Comprehensive experiments on four benchmarks, including natural image and medical image analysis tasks, demonstrate the consistent effectiveness of our method on both local and external validations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yiqing Shen (53 papers)
  2. Yuyin Zhou (92 papers)
  3. Lequan Yu (89 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.