Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation (2204.03838v1)

Published 8 Apr 2022 in cs.CV

Abstract: Adversarial learning has achieved remarkable performances for unsupervised domain adaptation (UDA). Existing adversarial UDA methods typically adopt an additional discriminator to play the min-max game with a feature extractor. However, most of these methods failed to effectively leverage the predicted discriminative information, and thus cause mode collapse for generator. In this work, we address this problem from a different perspective and design a simple yet effective adversarial paradigm in the form of a discriminator-free adversarial learning network (DALN), wherein the category classifier is reused as a discriminator, which achieves explicit domain alignment and category distinguishment through a unified objective, enabling the DALN to leverage the predicted discriminative information for sufficient feature alignment. Basically, we introduce a Nuclear-norm Wasserstein discrepancy (NWD) that has definite guidance meaning for performing discrimination. Such NWD can be coupled with the classifier to serve as a discriminator satisfying the K-Lipschitz constraint without the requirements of additional weight clipping or gradient penalty strategy. Without bells and whistles, DALN compares favorably against the existing state-of-the-art (SOTA) methods on a variety of public datasets. Moreover, as a plug-and-play technique, NWD can be directly used as a generic regularizer to benefit existing UDA algorithms. Code is available at https://github.com/xiaoachen98/DALN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Lin Chen (384 papers)
  2. Huaian Chen (12 papers)
  3. Zhixiang Wei (8 papers)
  4. Xin Jin (285 papers)
  5. Xiao Tan (75 papers)
  6. Yi Jin (84 papers)
  7. Enhong Chen (243 papers)
Citations (91)

Summary

We haven't generated a summary for this paper yet.