Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Maximum Weighted Nash Welfare for Binary Valuations (2204.03803v2)

Published 8 Apr 2022 in econ.TH and cs.GT

Abstract: We consider the problem of fairly allocating indivisible goods to agents with weights representing their entitlements. A natural rule in this setting is the maximum weighted Nash welfare (MWNW) rule, which selects an allocation maximizing the weighted product of the agents' utilities. We show that when agents have binary valuations, a specific version of MWNW is resource- and population-monotone, satisfies group-strategyproofness, and can be implemented in polynomial time.

Citations (24)

Summary

We haven't generated a summary for this paper yet.