Papers
Topics
Authors
Recent
Search
2000 character limit reached

The combinator ${\bf M}$ and the Mockingbird lattice

Published 7 Apr 2022 in math.CO and cs.LO | (2204.03586v2)

Abstract: We study combinatorial and order theoretic structures arising from the fragment of combinatory logic spanned by the basic combinator ${\bf M}$. This basic combinator, named as the Mockingbird by Smullyan, is defined by the rewrite rule ${\bf M} x_1 \to x_1 x_1$. We prove that the reflexive and transitive closure of this rewrite relation is a partial order on terms on ${\bf M}$ and that all connected components of its rewrite graph are Hasse diagram of lattices. This last result is based on the introduction of new lattices on duplicative forests, which are sorts of treelike structures. These lattices are not graded, not self-dual, and not semidistributive. We present some enumerative properties of these lattices like the enumeration of their elements, of the edges of their Hasse diagrams, and of their intervals. These results are derived from formal power series on terms and on duplicative forests endowed with particular operations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.