Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tencent Text-Video Retrieval: Hierarchical Cross-Modal Interactions with Multi-Level Representations (2204.03382v8)

Published 7 Apr 2022 in cs.CV

Abstract: Text-Video Retrieval plays an important role in multi-modal understanding and has attracted increasing attention in recent years. Most existing methods focus on constructing contrastive pairs between whole videos and complete caption sentences, while overlooking fine-grained cross-modal relationships, e.g., clip-phrase or frame-word. In this paper, we propose a novel method, named Hierarchical Cross-Modal Interaction (HCMI), to explore multi-level cross-modal relationships among video-sentence, clip-phrase, and frame-word for text-video retrieval. Considering intrinsic semantic frame relations, HCMI performs self-attention to explore frame-level correlations and adaptively cluster correlated frames into clip-level and video-level representations. In this way, HCMI constructs multi-level video representations for frame-clip-video granularities to capture fine-grained video content, and multi-level text representations at word-phrase-sentence granularities for the text modality. With multi-level representations for video and text, hierarchical contrastive learning is designed to explore fine-grained cross-modal relationships, i.e., frame-word, clip-phrase, and video-sentence, which enables HCMI to achieve a comprehensive semantic comparison between video and text modalities. Further boosted by adaptive label denoising and marginal sample enhancement, HCMI achieves new state-of-the-art results on various benchmarks, e.g., Rank@1 of 55.0%, 58.2%, 29.7%, 52.1%, and 57.3% on MSR-VTT, MSVD, LSMDC, DiDemo, and ActivityNet, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jie Jiang (246 papers)
  2. Shaobo Min (13 papers)
  3. Weijie Kong (11 papers)
  4. Dihong Gong (14 papers)
  5. Hongfa Wang (29 papers)
  6. Zhifeng Li (74 papers)
  7. Wei Liu (1135 papers)
Citations (13)