Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composite Spatial Monte Carlo Integration Based on Generalized Least Squares (2204.03248v3)

Published 7 Apr 2022 in stat.CO, cond-mat.dis-nn, cs.LG, physics.data-an, and stat.ML

Abstract: Although evaluation of the expectations on the Ising model is essential in various applications, it is mostly infeasible because of intractable multiple summations. Spatial Monte Carlo integration (SMCI) is a sampling-based approximation. It can provide high-accuracy estimations for such intractable expectations. To evaluate the expectation of a function of variables in a specific region (called target region), SMCI considers a larger region containing the target region (called sum region). In SMCI, the multiple summation for the variables in the sum region is precisely executed, and that in the outer region is evaluated by the sampling approximation such as the standard Monte Carlo integration. It is guaranteed that the accuracy of the SMCI estimator improves monotonically as the size of the sum region increases. However, a haphazard expansion of the sum region could cause a combinatorial explosion. Therefore, we hope to improve the accuracy without such an expansion. In this paper, based on the theory of generalized least squares (GLS), a new effective method is proposed by combining multiple SMCI estimators. The validity of the proposed method is demonstrated theoretically and numerically. The results indicate that the proposed method can be effective in the inverse Ising problem (or Boltzmann machine learning).

Summary

We haven't generated a summary for this paper yet.