Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedCos: A Scene-adaptive Federated Optimization Enhancement for Performance Improvement (2204.03174v1)

Published 7 Apr 2022 in cs.LG, cs.AI, and cs.DC

Abstract: As an emerging technology, federated learning (FL) involves training machine learning models over distributed edge devices, which attracts sustained attention and has been extensively studied. However, the heterogeneity of client data severely degrades the performance of FL compared with that in centralized training. It causes the locally trained models of clients to move in different directions. On the one hand, it slows down or even stalls the global updates, leading to inefficient communication. On the other hand, it enlarges the distances between local models, resulting in an aggregated global model with poor performance. Fortunately, these shortcomings can be mitigated by reducing the angle between the directions that local models move in. Based on this fact, we propose FedCos, which reduces the directional inconsistency of local models by introducing a cosine-similarity penalty. It promotes the local model iterations towards an auxiliary global direction. Moreover, our approach is auto-adapt to various non-IID settings without an elaborate selection of hyperparameters. The experimental results show that FedCos outperforms the well-known baselines and can enhance them under a variety of FL scenes, including varying degrees of data heterogeneity, different number of participants, and cross-silo and cross-device settings. Besides, FedCos improves communication efficiency by 2 to 5 times. With the help of FedCos, multiple FL methods require significantly fewer communication rounds than before to obtain a model with comparable performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hao Zhang (948 papers)
  2. Tingting Wu (18 papers)
  3. Siyao Cheng (3 papers)
  4. Jie Liu (492 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.