Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplicial Resolutions of Powers of Square-free Monomial Ideals (2204.03136v3)

Published 7 Apr 2022 in math.AC and math.CO

Abstract: The Taylor resolution is almost never minimal for powers of monomial ideals, even in the square-free case. In this paper we introduce a smaller resolution for each power of any square-free monomial ideal, which depends only on the number of generators of the ideal. More precisely, for every pair of fixed integers $r$ and $q$, we construct a simplicial complex that supports a free resolution of the $r$-th power of any square-free monomial ideal with $q$ generators. The resulting resolution is significantly smaller than the Taylor resolution, and is minimal for special cases. Considering the relations on the generators of a fixed ideal allows us to further shrink these resolutions. We also introduce a class of ideals called "extremal ideals", and show that the Betti numbers of powers of all square-free monomial ideals are bounded by Betti numbers of powers of extremal ideals. Our results lead to upper bounds on Betti numbers of powers of any square-free monomial ideal that greatly improve the binomial bounds offered by the Taylor resolution.

Summary

We haven't generated a summary for this paper yet.