Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Alignment Networks for Long-term Video (2204.02968v1)

Published 6 Apr 2022 in cs.CV

Abstract: The objective of this paper is a temporal alignment network that ingests long term video sequences, and associated text sentences, in order to: (1) determine if a sentence is alignable with the video; and (2) if it is alignable, then determine its alignment. The challenge is to train such networks from large-scale datasets, such as HowTo100M, where the associated text sentences have significant noise, and are only weakly aligned when relevant. Apart from proposing the alignment network, we also make four contributions: (i) we describe a novel co-training method that enables to denoise and train on raw instructional videos without using manual annotation, despite the considerable noise; (ii) to benchmark the alignment performance, we manually curate a 10-hour subset of HowTo100M, totalling 80 videos, with sparse temporal descriptions. Our proposed model, trained on HowTo100M, outperforms strong baselines (CLIP, MIL-NCE) on this alignment dataset by a significant margin; (iii) we apply the trained model in the zero-shot settings to multiple downstream video understanding tasks and achieve state-of-the-art results, including text-video retrieval on YouCook2, and weakly supervised video action segmentation on Breakfast-Action; (iv) we use the automatically aligned HowTo100M annotations for end-to-end finetuning of the backbone model, and obtain improved performance on downstream action recognition tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tengda Han (23 papers)
  2. Weidi Xie (132 papers)
  3. Andrew Zisserman (248 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.