Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling the Computational Complexity of Network Untangling (2204.02668v1)

Published 6 Apr 2022 in cs.DS, cs.AI, and cs.DM

Abstract: We study the network untangling problem introduced by Rozenshtein, Tatti, and Gionis [DMKD 2021], which is a variant of Vertex Cover on temporal graphs -- graphs whose edge set changes over discrete time steps. They introduce two problem variants. The goal is to select at most $k$ time intervals for each vertex such that all time-edges are covered and (depending on the problem variant) either the maximum interval length or the total sum of interval lengths is minimized. This problem has data mining applications in finding activity timelines that explain the interactions of entities in complex networks. Both variants of the problem are NP-hard. In this paper, we initiate a multivariate complexity analysis involving the following parameters: number of vertices, lifetime of the temporal graph, number of intervals per vertex, and the interval length bound. For both problem versions, we (almost) completely settle the parameterized complexity for all combinations of those four parameters, thereby delineating the border of fixed-parameter tractability.

Citations (7)

Summary

We haven't generated a summary for this paper yet.