Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cramér's moderate deviations for martingales with applications (2204.02562v2)

Published 6 Apr 2022 in math.PR, math.ST, and stat.TH

Abstract: Let $(\xi_i,\mathcal{F}i){i\geq1}$ be a sequence of martingale differences. Set $X_n=\sum_{i=1}n \xi_i $ and $ \langle X \rangle_n=\sum_{i=1}n \mathbf{E}(\xi_i2|\mathcal{F}_{i-1}).$ We prove Cram\'er's moderate deviation expansions for $\displaystyle \mathbf{P}(X_n/\sqrt{\langle X\rangle_n} \geq x)$ and $\displaystyle \mathbf{P}(X_n/\sqrt{ \mathbf{E}X_n2} \geq x)$ as $n\to\infty.$ Our results extend the classical Cram\'{e}r result to the cases of normalized martingales $X_n/\sqrt{\langle X\rangle_n}$ and standardized martingales $X_n/\sqrt{ \mathbf{E}X_n2}$, with martingale differences satisfying the conditional Bernstein condition. Applications to elephant random walks and autoregressive processes are also discussed.

Summary

We haven't generated a summary for this paper yet.