A robust scalar-on-function logistic regression for classification
Abstract: Scalar-on-function logistic regression, where the response is a binary outcome and the predictor consists of random curves, has become a general framework to explore a linear relationship between the binary outcome and functional predictor. Most of the methods used to estimate this model are based on the least-squares type estimators. However, the least-squares estimator is seriously hindered by outliers, leading to biased parameter estimates and an increased probability of misclassification. This paper proposes a robust partial least squares method to estimate the regression coefficient function in the scalar-on-function logistic regression. The regression coefficient function represented by functional partial least squares decomposition is estimated by a weighted likelihood method, which downweighs the effect of outliers in the response and predictor. The estimation and classification performance of the proposed method is evaluated via a series of Monte Carlo experiments and a strawberry puree data set. The results obtained from the proposed method are compared favorably with existing methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.